11 research outputs found

    EEG biomarkers for the diagnosis and treatment of infantile spasms

    Get PDF
    Early diagnosis and treatment are critical for young children with infantile spasms (IS), as this maximizes the possibility of the best possible child-specific outcome. However, there are major barriers to achieving this, including high rates of misdiagnosis or failure to recognize the seizures, medication failure, and relapse. There are currently no validated tools to aid clinicians in assessing objective diagnostic criteria, predicting or measuring medication response, or predicting the likelihood of relapse. However, the pivotal role of EEG in the clinical management of IS has prompted many recent studies of potential EEG biomarkers of the disease. These include both visual EEG biomarkers based on human visual interpretation of the EEG and computational EEG biomarkers in which computers calculate quantitative features of the EEG. Here, we review the literature on both types of biomarkers, organized based on the application (diagnosis, treatment response, prediction, etc.). Visual biomarkers include the assessment of hypsarrhythmia, epileptiform discharges, fast oscillations, and the Burden of AmplitudeS and Epileptiform Discharges (BASED) score. Computational markers include EEG amplitude and power spectrum, entropy, functional connectivity, high frequency oscillations (HFOs), long-range temporal correlations, and phase-amplitude coupling. We also introduce each of the computational measures and provide representative examples. Finally, we highlight remaining gaps in the literature, describe practical guidelines for future biomarker discovery and validation studies, and discuss remaining roadblocks to clinical implementation, with the goal of facilitating future work in this critical area

    Highlights From the Annual Meeting of the American Epilepsy Society 2022

    Get PDF
    With more than 6000 attendees between in-person and virtual offerings, the American Epilepsy Society Meeting 2022 in Nashville, felt as busy as in prepandemic times. An ever-growing number of physicians, scientists, and allied health professionals gathered to learn a variety of topics about epilepsy. The program was carefully tailored to meet the needs of professionals with different interests and career stages. This article summarizes the different symposia presented at the meeting. Basic science lectures addressed the primary elements of seizure generation and pathophysiology of epilepsy in different disease states. Scientists congregated to learn about anti-seizure medications, mechanisms of action, and new tools to treat epilepsy including surgery and neurostimulation. Some symposia were also dedicated to discuss epilepsy comorbidities and practical issues regarding epilepsy care. An increasing number of patient advocates discussing their stories were intertwined within scientific activities. Many smaller group sessions targeted more specific topics to encourage member participation, including Special Interest Groups, Investigator, and Skills Workshops. Special lectures included the renown Hoyer and Lombroso, an ILAE/IBE joint session, a spotlight on the impact of Dobbs v. Jackson on reproductive health in epilepsy, and a joint session with the NAEC on coding and reimbursement policies. The hot topics symposium was focused on traumatic brain injury and post-traumatic epilepsy. A balanced collaboration with the industry allowed presentations of the latest pharmaceutical and engineering advances in satellite symposia

    Surgical evaluation in children \u3c3 years of age with drug-resistant epilepsy: Patient characteristics, diagnostic utilization, and potential for treatment delays

    No full text
    OBJECTIVE: Drug-resistant epilepsy (DRE) occurs at higher rates in children \u3c3 years old. Epilepsy surgery is effective, but rarely utilized in young children despite developmental benefits of early seizure freedom. The present study aims to identify unique patient characteristics and evaluation strategies in children \u3c3 years old who undergo epilepsy surgery evaluation as a means to assess contributors and potential solutions to health care disparities in this group. METHODS: The Pediatric Epilepsy Research Consortium Epilepsy Surgery Database, a multicentered, cross-sectional collaboration of 21 US pediatric epilepsy centers, collects prospective data on children \u3c18 years of age referred for epilepsy surgery evaluation. We compared patient characteristics, diagnostic utilization, and surgical treatment between children \u3c3 years old and those older undergoing initial presurgical evaluation. We evaluated patient characteristics leading to delayed referral (\u3e1 year) after DRE diagnosis in the very young. RESULTS: The cohort included 437 children, of whom 71 (16%) were \u3c3 years of age at referral. Children evaluated before the age of 3 years more commonly had abnormal neurological examinations (p = .002) and daily seizures (p = .001). At least one ancillary test was used in 44% of evaluations. Fifty-nine percent were seizure-free following surgery (n = 34), with 35% undergoing limited focal resections. Children with delayed referrals more often had focal aware (p \u3c .001) seizures and recommendation for palliative surgeries (p \u3c .001). SIGNIFICANCE: There are relatively few studies of epilepsy surgery in the very young. Surgery is effective, but may be disproportionally offered to those with severe presentations. Relatively low utilization of ancillary testing may contribute to reduced surgical therapy for those without evident lesions on magnetic resonance imaging. Despite this, a sizeable portion of patients have favorable outcome after focal epilepsy surgery resections

    The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package*

    Get PDF
    The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project

    The Pathophysiology of Concussions in Youth

    No full text
    corecore